1、黎曼猜想:黎曼猜想是关于黎曼函数(s)的零点分布的猜想,由数学家波恩哈德-黎曼于1859年提出。虽然在知名度上,黎曼猜想不及费尔马猜想和哥德巴赫猜想,但它在数学上的重要性要远远超过后两者,是当今数学界最重要的数学难题。
2、霍奇猜想:霍奇猜想可以说难道几乎所有的数学家,猜想表达能够将特定的对象形状,在不断增加维数的时候粘合形成一起,看似非常的巧妙,但在实际的操作过程中必须要加上没有几何解释的部件。
3、BSD猜想:BSD猜想,全称贝赫和斯维纳通-戴尔猜想,它描述了阿贝尔簇的算术性质与解析性质之间的联系。
4、欧几里得第五公设:欧几里得第五公设:同一平面内的两条直线与第三条直线相交,若其中一侧的两个内角之和小于二直角,则该两直线必在这一侧相交。因它与平行公理是等价的,所以又称为欧几里得平行公设,简称平行公设。
5、NP完全问题:NP完全问题可以说是一个听着就很复杂的数学问题,简单的讲所有的完全多项式在非确定性的问题,都可以被转化为名为满足性的逻辑运算问题,数学家们猜想的是到底有没有一个确定性的算大。
6、庞加莱猜想:庞加莱猜想提出来很长时间了,猜想中提到如果不断的去扯一个橡皮筋,然后让它慢慢于移动伸缩为一个点,最终能否证明三维球面或者是四维空间中的和原点有距离的全部问题,简直就是很困难了。
7、纳维-斯托克斯方程:这个数学问题本是数学家们用来研究无论是在微在湍流等情况下,都能用纳卫尔-斯托可的方程式做出相应的数据解答,但是到目前能完全理解纳卫尔-斯托可方程式的人少之又少,而且有些理论的实质进展很微妙。
哥德巴赫猜想、霍奇(Hodge)猜想、庞加莱(Poincare)猜想、杨-米尔斯(Yang-Mills)存在性和质量缺口、贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想。
数学难题可以是指那些历经长时间而仍未有解答/完全解答的数学问题。
古今以来,一些特意提出的数学难题有:平面几何三大难题、希尔伯特的23个问题、世界三大数学猜想、千禧年大奖难题等。
四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”
这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。